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Abstract: We have proposed measures of cumulative entropy and dynamic cumulative entropy based on order statistics and derived a
characterization result that dynamic cumulative entropy of the ith order statistics determines the distribution function uniquely. Some
properties of the measures proposed have also been studied.

Keywords: Cumulative entropy, Order Statistics, Mean inactivity time, Reversed hazard rate, Survival function.

1 Introduction

In information theory, Shannon entropy [14] plays a vital role to measure the index of dispersion, volatility or uncertainty
associated with a random variable X . Shannon entropy for a non-negative continuous random variable X is given by

H(X) = H( f ) =−
∫ ∞

0
f (x) log f (x)dx, (1)

where f (x) is the pdf of random variable X .
Consider a system X that has survived upto time t. In order to calculate the uncertainty about the residual life of such a

system, Shannon entropy (1) is not appropriate. Ebrahimi [7] introduced a new measure to ascertain the uncertainty about
the residual life of a random variable Xt = (X |X ≥ t) given by

H(F ; t) = −
∫ ∞

t

f (x)
F̄(t)

log
(

f (x)
F̄(t)

)
dx

= 1− 1
F̄(t)

∫ ∞

t
f (x) logλF(x)dx, (2)

where F̄(x) = 1−F(x) is the survival function of X and λF(x) is its failure rate or hazard rate defined by f (x)/F̄(x).
Clearly for t = 0, H(F ;0) =−

∫ ∞
0 f (x) log f (x)dx represents the Shannon uncertainty contained in X . Di Cr- escenzo

and Longobardi [6] studied the case when the system has been monitored on regular basis. Suppose that at any instant t,
the system has been found to be dead. They introduced a measure known as past entropy to find the uncertainty about the
time at which the system has failed. It is given by

H̄(F ; t) = −
∫ t

0

f (x)
F(t)

log
(

f (x)
F(t)

)
dx

= 1− 1
F(t)

∫ t

0
f (x) logτF(x)dx, (3)

where τF(x) is the reversed hazard rate of X given by f (x)/F(x).
Rao et al. [13] specified the importance of survival function based measures over the density function based and gave

some results based on these measures. Di Crescenzo and Longobardi [5] defined new measures of information known
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as cumulative and dynamic cumulative entropies based on the distribution function F of a random variable X , given
respectively by

C ξ (F) =−
∫ ∞

0
F(x) logF(x)dx, (4)

and

C ξ (F ; t) =−
∫ t

0

F(x)
F(t)

log
(

F(x)
F(t)

)
dx, (5)

t > 0,F(t)> 0. In this paper, we study the measures of cumulative and dynamic cumulative entropies using order statistics.
A (n− k+1)-out-of-n system, which is an application of order statistics, is widely used in reliability theory and survival
analysis.

The structure of (n − k + 1)-out-of-n system is such that it works if and only if atleast (n − k + 1)-out-of-n
components are working. For k = 1 and k = n it reduces respectively to a series and a parallel system. Information
theoretic aspects of order statistics have been studied widely. Wong and Chen [15] showed that the difference between
average entropy of order statistics and the entropy of a data distribution is a constant. Park [12] showed some recurrence
relations for entropy of order statistics. Ebrahimi et al. [8] studied some information properties of order statistics based
on Shannon entropy and Kullback-Leibler [11] measure. Baratpour et al. [2,3] have derived characterization result for the
ith order statistics based on Shannon entropy and Renyi [13] entropy using Stone-Weistrass Theorem.

The organization of paper is as follows: In Section 2, we define measures of cumulative and dynamic cumulative
entropies based on order statistics. Section 3 focuses on a characterization result. Some properties of these measures are
discussed in Section 4. We conclude with the results obtained in Section 5.

2 Cumulative and dynamic cumulative entropy using order statistics

Suppose X1,X2,· · · ,Xn are n independent and identically distributed observations from a distribution F , where F(.) is
differentiable with a density f (.) which is positive in an interval and zero elsewhere. The order statistics of the sample is
defined by the arrangement of X1,X2,· · · ,Xn from the smallest to largest denoted as X1:n,X2:n,· · · ,Xn:n. Then the p.d.f. of the
ith order statistics Xi:n, for i = 1,2, · · · ,n, is given by

fi:n(x) =
1

B(i,n− i+1)
(F(x))i−1(1−F(x))n−i f (x), (6)

where

B(a,b) =
∫ 1

0
xa−1(1− x)b−1dx,a > 0,b > 0, (7)

is beta function with parameters a and b, refer to [1,4].

Analogous to (6) and (7), we define measures of cumulative and dynamic cumulative entropy of the ith order statistics
Xi:n given respectively by

C ξ (Fi:n) =−
∫ ∞

0
Fi:n(x) logFi:n(x)dx (8)

and

C ξ (Fi:n; t) =−
∫ t

0

Fi:n(x)
Fi:n(t)

log
(

Fi:n(x)
Fi:n(t)

)
dx, t > 0, Fi:n(t)> 0. (9)

Obviously, when n = 1, (10) and (11) reduces to (6) and (7).

Put i = n, in (10) and (11) we get

C ξ (Fn:n) =−
∫ ∞

0
Fn:n(x) logFn:n(x)dx (10)

and

C ξ (Fn:n; t) =−
∫ t

0

Fn:n(x)
Fn:n(t)

log
(

Fn:n(x)
Fn:n(t)

)
dx . (11)
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From (8), we have fn:n(x) = nFn−1(x) f (x). Therefore, Fn:n(x) = Fn(x). Using probability integral transformation U =
F(X), where U is uniformly distributed random variable in [0,1], in (12) and (13) we get

C ξ (Fn:n) =−n
∫ 1

0

un logu
f (F−1(u))

du. (12)

and

C ξ (Fn:n; t) =
−n

Fn(t)

∫ F(t)

0

un

f (F−1(u))
du+

n logF(t)
Fn(t)

∫ F(t)

0

un

f (F−1(u))
du . (13)

In the example given below, we calculate the cumulative entropy of sample maxima for an exponentially distributed
random variable.

Example 2.1 Let X be an exponentially distributed random variable with parameter θ , having pdf f (x) = θe−θx, θ > 0,
x ≥ 0. It is easy to see that f (F−1(u)) = θ(1−u). Putting this value in (14), we obtain

C ξ (Fn:n) = −n
∫ 1

0

un logu
θ(1−u)

du

=
n
θ

(∫ 1

o

(1−un) logu
1−u

du−
∫ 1

0

logu
1−u

du
)
.

When we put n = 1 in the above integral, we get

C ξ (F) =
1
θ

(
π2

6
−1

)
.

3 A characterization result

We study the characterization result for the dynamic cumulative entropy of the ith order statistics using the sufficient
condition for the uniqueness of the solution of initial value differential equation

dy
dx

= f (x,y), y(x0) = y0, (14)

where f is a function of two variables whose domain is a region D ⊂ R2, (x0,y0) is a point in D and y is the unknown
function. By the solution of (15), we find a function which satisfies the following conditions: (i) ϕ is differentiable on I,
(ii) the growth of ϕ lies in D, (iii) ϕ(x0) = y0 and (iv) ϕ ′

(x) = f (x,ϕ(x)), for all x ∈ I. The following theorem together
with other results will help in proving our characterization result.

Theorem 3.1 Let the function f be a continuous function defined in a domain D ⊂ R2 and let f satisfy Lipschitz condition
(with respect to y) in D, that is

| f (x,y1)− f (x,y2)| ≤ k|y1 − y2|, k > 0, (15)

for every point (x,y1) and (x,y2) in D. Then the function y = ϕ(x) satisfy the initial value problem y
′
= f (x,y) and

ϕ(x0) = y0, x ∈ I, is unique.
We use the following Lemma, refer to [9], to present a sufficient condition which ensures that Lipschitz condition is

satisfied in D.
Lemma 3.1 Suppose that the function f is continuous in a convex region D ⊂ R2. Suppose that ∂ f

∂y exists and it is
continuous in D. Then, f satisfies Lipschitz condition in D.

Next, we give the main characterization result.
Theorem 3.2 Let X be a non-negative continuous random variable with distribution function F(.). Let

C ξ (Fi:n; t)< ∞, ∀t ≥ 0, denote the dynamic cumulative entropy of the ith order statistics. Then, C ξ (Fi:n; t) characterizes
the distribution function.

Proof: Suppose there exists two functions F1 and F2 such that

C ξ (F1i:n; t) = C ξ (F2i:n; t),
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for all t ≥ 0 and for all i ≤ n. We know that

C ξ (Fi:n; t) =−
∫ t

0

Fi:n(x)
Fi:n(x)

log
(

Fi:n(x)
Fi:n(t)

)
dx

=− 1
Fi:n(t)

∫ t

0
Fi:n(x) logFi:n(x)dx+µFi:n(t) logFi:n(t), (16)

where
µFi:n(t) =

1
Fi:n(t)

∫ t

0
Fi:n(x)dx

is the mean inactivity time of the ith order statistics.
Taking derivative with respect to t on both sides of (18) and using the relationship between reversed hazard rate and

mean inactivity time of the ith order statistics given by

τFi:n(t) =
1−µ ′

Fi:n
(t)

µFi:n(t)
, (17)

we have

µ
′
Fi:n

(t) =
µFi:n(t)−C ξ (Fi:n; t)− d

dt C ξ (Fi:n; t)µFi:n(t)
µFi:n(t)−C ξ (Fi:n; t)

. (18)

Suppose that
C ξ (F1i:n; t) = C ξ (F2i:n; t) = g(t) (say), 1 ≤ i ≤ n, t ≥ 0,

where F1 and F2 are two distribution functions. Then, ∀t ≥ 0, from (20) we get

µ
′
F1i:n

(t) = ψ(t,µF1i:n(t)), µ
′
F2i:n

(t) = ψ(t,µF2i:n(t))

where

ψ(t,y) =
y−g(t)−g

′
(t)y

y−g(t)
.

Using Theorem 3.1 and Lemma 3.1 we get µF1i:n(t) = µF2i:n(t), for all t ≥ 0 and for all i ≤ n, which using (19) gives
τF1i:n(t) = τF2i:n(t), for all t ≥ 0 and for all i ≤ n. Hence the result follows.

Remark: For n = 1, Theorem 3.2 implies that the measure of dynamic cumulative entropy C ξ (F ; t) characterizes the
distribution function of X uniquely, which can be proved otherwise also on similar lines.

4 Some properties of cumulative entropy

In this section, we discuss some properties of cumulative and dynamic cumulative entropy of order statistics.
P.1 Let C ξ (Fi:n)< ∞ denote the entropy of ith order statistics, then

C ξ (Fi:n) = E[(µFi:n(X))]. (19)

Proof:

E[(µFi:n(X))] =
∫ ∞

0

(
1

Fi:n(t)

∫ t

0
Fi:n(x)dx

)
fi:n(t)dt

=
∫ ∞

o

(∫ t

0
Fi:n(x)dx

)
fi:n(t)
Fi:n(t)

dt

=
∫ ∞

0

(∫ ∞

x

fi:n(t)
Fi:n(t)

dt
)

Fi:n(x)dx

= −
∫ ∞

0
Fi:n(x) logFi:n(x)dx = C ξ (Fi:n).

In the following example we verify the above result for the first order statistics in case of exponential distribution.
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Let X be an exponentially distributed random variable with p.d.f f (x) = θe−θx, θ > 0, x ≥ 0. For i = 1, it can be easily
seen that

E[(µF1:n(X))] =
∫ ∞

0
µF1:n(x) f1:n(x)dx

= − 1
nθ

− 1
nθ

∫ 1

0

logu
(1−u)

du

=
1

nθ

(
π2

6
−1

)
.

Also we have

C ξ (F1:n) = −
∫ ∞

0
F1:n(x) logF1:n(x)dx

= −
∫ ∞

0
(1− e−nθx) log(1− e−nθx)dx

= − 1
nθ

− 1
nθ

∫ 1

0

logu
(1−u)

du

= − 1
nθ

+
π2

6nθ
,

which is same as E[(µF1:n(X))].
P.2 Let Cξ (Fi:n; t)< ∞ denote cumulative entropy of the ith order statistics. Then

C ξ (Fi:n; t) = E[(µFi:n(X))|Xi:n ≤ t]. (20)

Proof: The proof is similar to P.1.
P.3 The upper bound for the dynamic cumulative entropy of the ith order statistics is given by

C ξ (Fi:n; t)≤ C ξ (Fi:n)

Fi:n(t)
.

Proof: We know that

C ξ (Fi:n) =− 1
Fi:n(t)

∫ t

0
Fi:n(x) logFi:n(x)dx+

logFi:n(t)
Fi:n(t)

∫ t

0
Fi:n(x)dx . (21)

For all t ≥ 0, using 0 ≤ logFi:n(t)≤ 1 in the above equation we get

C ξ (Fi:n; t) ≤ − 1
Fi:n(t)

∫ t

0
Fi:n(x) logFi:n(x)dx

≤ − 1
Fi:n(t)

∫ ∞

0
Fi:n(x) logFi:n(x)dx.

Hence

C ξ (Fi:n; t)≤ C ξ (Fi:n)

Fi:n(t)

with equality as t → ∞.

5 Conclusion and comments

The distribution function based information measures called cumulative entropy measures are in general more stable in
comparison to density based measures. The dynamic measure of cumulative entropy (7) measures the inactivity time (or
past lifetime) of distribution of a system found to be dead at time t. The entropy measures based on order statistics have
been studied widely and are crucial for measuring uncertainty in statistical modeling. The dynamic cumulative entropy
measures based on order statistics characterizes the underlying distribution uniquely and are also bounded above. The
results studied can be of interest both from theoretical as well as practical point of views.
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